Properties of Logarithms....

Inverse trig functions, special angles...

Limit Laws

Fundamental Laws:

1. $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
2. $\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$
3. $\lim _{x \rightarrow a}[c f(x)]=c \lim _{x \rightarrow a} f(x)$
4. $\lim _{x \rightarrow a}[f(x) \cdot g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
5. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$

Derived Laws:
6. $\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n} \quad$ where n is positive integer
7. $\lim c=c$
8. $\lim x=a$
9. $\lim _{x \rightarrow a} x^{n}=a^{n} \quad$ where n is positive integer
10. $\lim _{x \rightarrow a} \sqrt[n]{x}=\sqrt[n]{a}$
11. $\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)}$

Squeeze theorem: \qquad
Limit Continuity:
Continuous if:

1. $\mathrm{f}(\mathrm{c})$ is defined
2. The limit exists at the value of x
3. $\mathrm{f}(\mathrm{c})$ is $=$ the limit L

Limit continuity theorems:

4. If f and g are continuous at a and c is const, then the following functions are also continuous at a:
5. $f+g$
6. $f-g$
7. $c f$
8. $f g$
9. $\frac{f}{g}$ if $g(a) \neq 0$
10. a) Any polynomial is conts everywhere $\mathbb{R}=(-\infty, \infty)$
b) Any rational function is conts whereveer it is defined (domain).
11. $\lim _{\theta \rightarrow 0} \cos \theta=1 \quad \lim _{\theta \rightarrow 0} \sin \theta=0$
12. Types of functions continuous at every number in their domain:

- Polynomials
- Rational functions $\operatorname{Eg}: \lim _{x \rightarrow-2} \frac{x^{3}+2 x^{2}-1}{5-3 x}$
- Root functions
- Trig functions
- Inverse trig functions
- Exponential functions
- Log functions

8. Paraphrase: Limit symbol can be moved through a function symbol if the fn is conts and the limit exists. So:
$\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)$
9. If g is conts at a and f is conts at $g(a)$ then the composite function $f \circ g$ is conts at a
10. Intermediate value theorem. If f is conts on the closed interval [a,b] then the conts function takes on every intermediate value between $f(a)$ and $f(b)$
Derivatives of trig functions

$$
\begin{array}{ll}
(\sin x)^{\prime}=\cos x & (\cos x)^{\prime}=-\sin x \\
(\tan x)^{\prime}=\sec ^{2} x & (\cot x)^{\prime}=-\csc ^{2} x \\
(\sec x)^{\prime}=\sec x \cdot \tan x & \left(\csc ^{2} x\right)^{\prime}=-\csc x \cdot \cot x \\
\left(a^{x}\right)^{\prime}=a^{x} \ln a & \left(e^{x}\right)^{\prime}=e^{x} \\
\left(\log _{a} x\right)^{\prime}=\frac{1}{x \ln a} & (\ln a)^{\prime}=\frac{1}{\ln a} \\
(\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^{2}}} & (\arccos x)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}} \\
(\arctan x)^{\prime}=\frac{1}{\sqrt{1+x^{2}}} & (\operatorname{arccot} x)^{\prime}=-\frac{1}{\sqrt{1+x^{2}}} \\
(\operatorname{arcsec} x)^{\prime}=\frac{1}{x \sqrt{x^{2}-1}} & (\arccos x)^{\prime}=-\frac{1}{x \sqrt{x^{2}-1}}
\end{array}
$$

Slope of Tangent Line

$y=f\left(x_{1}\right)+f^{\prime}\left(x_{1}\right)\left(x-x_{1}\right)$
When solving for T.L.'s and points are given instead of slope, let $\mathrm{x}=\mathrm{a}$ in the T.L. EQ .

Related Rates

Volume of sphere: $V=\frac{4}{3} \pi r^{3}$
Volume of cone: $V=\frac{1}{3} \pi r^{2} h$
Volume of cylinder: $V=\pi r^{2} h$
Arc of a circle: $s=r \theta$
Law of Cos: $a^{2}=b^{2}+c^{2}-2 b c \cos \theta$

4.1 Maximum and Minimum Values

Extreme Value Thm: if f is continuous on a closed interval [a,b], then f has an absolute max and min at some values in $[\mathrm{a}, \mathrm{b}]$.
Fermat's Thm: if f has local max or min at c, and if $f^{\prime}(c)$ exists then $\mathrm{f}^{\prime}(\mathrm{c})=0$.
Find the Critical points: where $\mathrm{f}^{\prime}(\mathrm{c})=0$ and where $\mathrm{f}^{\prime} \mathrm{DNE}$

4.2 Mean Value Theorem

Rolle's Thm:

1. f is continuous on the closed interval [a, b]
2. f is differentiable on the open interval (a, b)
3. $f(a)=f(b)$

Then there is a number c in (a, b) s.t. $f^{\prime}(c)=0$

Mean Value Thm:

1. f is continuous on closed interval $[\mathrm{a}, \mathrm{b}]$
2. f is differentiable on the open interval (a, b)

Then there is a number c in (a, b) s.t.

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

4.8 - Newton's Method

$x_{\mathrm{n}+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$

