7.1 - Simple Subsitution

ex.: let $u=x^{1 / 3}$ or
let $x=u^{12}$ [when we have x 's to fractional powers]
$u=\sqrt{1+\sqrt{x}}$
$u^{2}=1+\sqrt{x}$
$\sqrt{x}=u^{1 / 2}-1$
$x=\left(u^{1 / 2}-1\right)^{2}$ [then find dx ...]
7.2-Trig Integrals
$\int \sin ^{m} x \cos ^{n} x d x$
$\int \tan ^{m} x \sec ^{n} x d x \quad$ [review even/odd m / n rules for these types]
7.3-Trig Substitution
$\sqrt{a^{2}-x^{2}} \rightarrow$ let $x=a \sin \theta$
$\sqrt{a^{2}+x^{2}} \rightarrow$ let $x=a \tan \theta$
$\sqrt{x^{2}-a^{2}} \rightarrow$ let $x=a \sec \theta$
[Sometimes need to complete the square to get one of these forms]
Eg: $x^{2}+6 x$

$$
\begin{aligned}
& =x^{2}+6 \mathrm{x}+9-9 \\
& =\left(x^{2}+6 \mathrm{x}+9\right)-9 \\
& \left.=(x+3)^{2}-9 \text { [then use simple substitution to replace } \mathrm{x}+3\right]
\end{aligned}
$$

7.4-Partial Fractions

$\frac{1}{x^{2}\left(x^{2}-1\right)\left(x^{2}+1\right)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{(x-1)}+\frac{D}{(x+1)}+\frac{E x+F}{\left(x^{2}+1\right)}$

4.4-L'hospital's Rule

Indeterminant forms when taking the Limit to infinity:
$\left[\frac{\infty}{\infty}\right]$ or $\left[\frac{0}{0}\right]$
Then apply l'Hospital's rule by taking the derivative of the numerator and denominator separately (don't use quotient rule!)
Other case: indeterminant form of $\mathbf{0}^{0}$ or ∞^{0} or $\mathbf{1}^{\infty}$:
Take the \ln of the function then move the exponent down to the front of the term. Then take the limit using $\mathrm{L}^{\prime} \mathrm{H}$ or whatever necessary. Then 'exponentiate' the result $\left[e^{L}\right]$.

7.8 - Improper Integrals

Improper integral type I:

$$
\begin{aligned}
& \int_{a}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x \\
& \int_{-\infty}^{b} f(x) d x=\lim _{t \rightarrow-\infty} \int_{t}^{b} f(x) d x \\
& \int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{a} f(x) d x+\int_{a}^{\infty} f(x) d x
\end{aligned}
$$

Improper integral type II:
If f is const on $[a, b)$ but disconts at b, then:

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow b^{-}} \int_{a}^{t} f(x) d x
$$

If f is const on $(\mathrm{a}, \mathrm{b}$ but disconts at a , then:
$\int_{a}^{b} f(x) d x=\lim _{t \rightarrow a^{+}} \int_{t}^{b} f(x) d x$

If there is a discontinuity at c s.t. $\mathrm{a}<\mathrm{c}<\mathrm{b}$, then:
$\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$

9.1-Simple Ordinary Differential Equations

Initial value problem means value to sub into the function
Solving means to resolve into a dependent var and an independent
var with no dy/dx

9.3 - Separable ODE's

Mixing tank problem, basic configuration:

$$
\frac{d(\text { amount })}{d t}=[\text { amount in }]-[\text { amount out }]
$$

9.5-Linear ODE's

Standard Form: $\frac{d y}{d x}+P(x) y=Q(x)$
' y ' must be next to $\mathrm{P}(\mathrm{x})$, but $\mathrm{P}(\mathrm{x})$ or $\mathrm{Q}(\mathrm{x})$ can just be 1

11.1-Sequences

- THM: Squeeze theorem for limits
- THM: Monotonic sequence thm: every bounded monotonic sequence is convergent
- THM: $\lim _{n \rightarrow \infty} r^{n}= \begin{cases}0, & \text { if }-1<\mathrm{r}<1 \\ 1, & \mathrm{r}=1\end{cases}$

Diverges otherwise!

- THM: if $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$ then $\lim _{n \rightarrow \infty} a_{n}=0$

11.2-11.7-Series

Geometric Series: $\sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r}$
Harmonic Series: $\sum_{n=1}^{\infty} \frac{1}{n} \rightarrow$ diverges
P-series: $\sum_{n=1}^{\infty} \frac{1}{n^{p}} \rightarrow$ converges for $\mathrm{p}>1$
Convergence tests:

1. Divergence test $\left[\lim a_{n} \neq 0\right.$, then diverges $]$
2. Integral test

Must not be alternating, must be decreasing conts function;
Then, if the I converges, so does the series (or if D , then D)
3. Comparison test (similar to squeeze)
4. Limit Comparison test (if L exists, then C/D same as reference)
5. Alternating Series Test $\left[b_{n+1}<b_{n}\right.$ and $\left.\lim b_{n}=0\right]$
6. Ratio Test $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\mathrm{L}$; if $\mathrm{L}<1$, then cvg; if $\mathrm{L}>1$, then dvg

11.8 - Power Series

11.9 Express Fn as Pwr Series

Start with the closed form of Geometric series
Radii of cvg is same before \& after diff/integration

11.10 Taylor \& Maclaurin

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)(x-a)^{n}}{n!}
$$

12.1-3D coordinate system

14.1 - Functions of several variables
14.2 - Limits of functions of several variables
14.3 - Partial Derivatives (multi-variable)

