```
1 Recursion (ch 3)
    - Always a 'base case' (the way out), recursive
        case(s)
    - Tail recursion is when the last instruction executed
        in the method is the recursive function call
    - Types:
        - Divide & Conquer - break up into smaller
        problems
                - Down by 1 (and Up by 1)
                - Division in halves
        - Last & All But Last, First and All But First
2 - Complexity (ch 6)
Time Complexity (operations/cpu usage)
    - Count the number of:
        operations
        comparisons
        loop overhead
        pointer/array references
        function calls
Space Complexity (storage/memory usage)
        Count number of variables
Unroll Recurrence Relation:
    base: T(0) = 0
    T(n)=1 +T(n-1)
    => = 1 + (1 + T(n-2))
    ** need to make T(n-x) into the base case, so
replace x with whatever is necessary **
        = 2 +T(n-2)
        = n +T(n-n)
        = n +T(0)
        =n+0 => O(n)
```

Using a Call Tree to determine complexity
- Space: lenght of longest branch
- Time: total number of nodes (see fmla for node count
in a perfect binary tree)
3 - Lists (ch2, ch8.1-8.4)
Here is a list with a header. The header helps make the
list easier to navigate.

Empty list (with header):

Simple Insert:
ptr = List;
while (ptr->Link ! = List \&\& ptr->Info < value) ptr = ptr->Link;
newItem->Link = ptr->Link;
ptr->Link $=$ newItem;
When is a (2-way) LL more space-efficient than an array of MAX size? (I is number of bytes):

LL space: n items + ptrs per item + header +
variable for the list
$=I * n+2 * p * n+(I+2 * p)+p$
Array space: Max*I + index of last item (or sentinal
value) + pointer/variable
= Max*I + I + p
So, more efficient to use 2 LL when:
I*n + 2*p*n + I + 2*p + p < MAX*I + I + p
$\Rightarrow \quad n<\frac{M A X \cdot I-2 \mathrm{p}}{I+2 \mathrm{p}}$
Depends on size of storage (I), and how much you want to allocate as the MAX of the array

But basically, for small amounts of data, an array is better (LL's have pointer overhead)

3a - Restricted Linked Lists (ch 7)

- Stacks
- program function calls
- computing post-fix math
- Queues
- printers, server requests, keyboard buf

4 - Trees (ch 9)
Binary Tree

- Sequential
stored in an array
root $=\mathrm{A}[1]$
left child of $A[i]=A[i * 2]$
right child of $A[i]=A[i * 2+1]$
parent of $A[i]=A[i / 2]$
A[i] is a if $<=>2 * i>n$
Problematic when right-heavy
- Linked

```
        \circ Navigation (pg 362, 363):
```

- Level Order
- Level-by-level, Left to right
- Pre-order
- Root, then left, then right
- In-order
- Left, then root, then right
- Post-order
- Left, then right, then root

Complete Binary Tree:

- All leaves on same lvl or 2 adjacent levels s.t. bottom-most leaves are as far left as possible
- height $=$ FLOOR (Log n$)$ [log base 2]

Binary Search Tree

- Has index values in the nodes
- Left child < parent < right child
- Search/Insert:
- Navigate left/right as needed
- Delete
- If leaf, simple
- If has 1 child, promote child
- If has 2 children,
- 'copy' largest from left or smallest
from right
- delete 'copy' (repeate recursively)

AVL Tree

- Is a Binary Search Tree, but not necessarily Complete
- For every node, the difference in height of the left and right subtree is +/- 1
- Rebalancing: See pg 379 of text
- Rebalancing - Outer-heavy:
- Single Right (or Left) Rotation of the unbalanced node (plus swap one child branch to keep things even ?)
- Rebalancing - Inner-heavy:
- Double Right (or left) rotation - Eg, Dbl right $->$ left then right

