Gauss-Jordan Elimination

Row Echelon form $\left[\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right]$
Reduced row echelon form $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Back Substitution: put into R.E. form, then solve from the bottom, upward.
$\boldsymbol{\operatorname { R a n k }}(\mathbf{A})=$ number of leading 1's in row echelon form
Homogeneous systems with $\mathrm{m}<\mathrm{n}$ have non-trivial solutions

Matrix operations

Transposition: rows become columns, col's become rows
Trace (tr): the sum of the numbers on the diagonal ($\mathrm{n} \times \mathrm{n}$)
Like rotating the page about the diagonal line
Transformation (composition): say, from X to Y to Z means:
Multiplication: $\mathrm{Z}(\mathrm{YX})$ (seemingly backwards)
Representing system as combination of matrices:
$6 \mathrm{x}+\mathrm{y}=0$
$4 \mathrm{x}-3 \mathrm{y}=-2$
Same as:
$A \vec{x}=\vec{b}$
$\left[\begin{array}{cc}6 & 1 \\ 4 & -3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}0 \\ -2\end{array}\right]$

Matrix Properties \& Non-Properties

1) $A 0=0$
2) But $A \neq 0$ and $B \neq 0$ does not imply that $A B \neq 0$
3) $A B=A C$ and $A \neq 0$ does not always imply that $B=C$
4) $A B$ not usually equal to $B A$
5) $(A B) C=A(B C) \quad$ [Associative]
6) $\mathrm{I}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
7) $A(B+C)=(A B)+(A C)$
8) $0+A=A$
9) $1 \mathrm{~A}=A$
10) $(k+m) A=k A+m A$
11) $k m A=k(m A)$
12) $k(A B)=(k A) B=A(k B)$
13) $(A+B)^{T}=A^{T}+B^{T}$
14) $(k A)^{T}=k(A)^{T}$
15) $(A B)^{T}=B^{T} A^{T}\left(\neq A^{T} B^{T}\right)$
16) $(A B)^{-1}=B^{-1} A^{-1}$

Matrix inverse

Formula:

$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{-1}=\frac{1}{a d-c b} \cdot\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right] \quad$ Assumes ad $-\mathrm{cb} \neq 0$

Elementary row method:

Just tag on 'I' on the right side of the A.M.:
$\left[\begin{array}{llll}a & b & 1 & 0 \\ c & d & 0 & 1\end{array}\right] \quad$ And follow the usual GJ method to solve

Big Theorem

$$
\begin{aligned}
& A^{-1} \text { exists... } \\
& \quad \Leftrightarrow A \vec{x}=\overrightarrow{0} \text { has only trivial solutions } \\
& \quad \Leftrightarrow \operatorname{Rank}(A)=n \text { (A } \sim \text { I via G-J) } \\
& \Leftrightarrow \forall \vec{b} \in R^{n}, A \vec{x}=\vec{b} \text { has } \geq 1 \text { solutions } \\
& \Leftrightarrow \forall \vec{b} \in R^{n}, A \vec{x}=\vec{b} \text { has } \leq 1 \text { solutions } \\
& \Leftrightarrow \forall \vec{b} \in R^{n}, A \vec{x}=\vec{b} \text { has }=1 \text { solutions } \\
& \Leftrightarrow \exists \vec{b} \in R^{n}, A \vec{x}=\vec{b} \text { has } \geq 1 \text { solutions }
\end{aligned}
$$

Special Types of Matrices

Symmetric: $A=A^{T}$
Symmetric Skew: $A=-A^{T}$
Diagonal: $\left[\begin{array}{lll}c & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & c\end{array}\right]$
\{Diag\} $\cdot \mathrm{A} \rightarrow$ scales rows
$\mathrm{A} \cdot\{\mathrm{Diag}\} \rightarrow$ scales cols
Upper triangle: $\left[\begin{array}{ll}c & c \\ 0 & c\end{array}\right]$
Lower triangle: $\left[\begin{array}{ll}c & 0 \\ c & c\end{array}\right]$

Complexity

1) $1+2+3+\ldots+n=\frac{n(n+1)}{2}$
2) $1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 \mathrm{n}+1)}{6}$

$$
=\frac{n^{3}}{3}+\frac{n^{2}}{2}+\frac{n}{6}
$$

Determinants

Remember to take ABS value for areas/volumes!!

1) $\operatorname{Det}(2 \times 2)=a d-b c$
2) $\operatorname{Det}(I)=1$
3) $\operatorname{Det}(0)=1$
4) $\operatorname{Det}\left(A^{\prime}\right)=-\operatorname{Det}(A)$, where A' has swapped a row or column
5) $\operatorname{Det}\left(A^{T}\right)=\operatorname{Det}(A)$
6) Ordinary Row Ops (R2:=R2 +kR 1) result in no change
7) $\left|\begin{array}{ll}k a_{11} & k a_{12} \\ a_{21} & a_{22}\end{array}\right|=k\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|$

Scaling rows -> multiply the $\operatorname{Det}(\mathrm{A})$ by the inverse of the scaling factor
8) $\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|+\left|\begin{array}{ll}a_{11} & a_{12} \\ b_{21} & b_{22}\end{array}\right|=\left|\begin{array}{cc}a_{11} & a_{12} \\ a_{21}+b_{21} & a_{22}+b_{22}\end{array}\right|$

Same holds for columns
9) $\operatorname{Det}($ triangular matrix $)=a_{11} \cdot a_{22} \cdot q_{33} \cdot \ldots \cdot a_{n n}$

